PRODUCT DESCRIPTION

The Strong angle-bracket screw (ABS) is made of hardened carbon steel that has been specially designed for joints involving steel plates. The special screw geometry reduces the splitting effect produced during the screw's installation and, combined with the self-clearing groove, ensures that the screw "bites" quickly. The screw's increased shank diameter creates higher shear forces between the steel plate and the wood. The screw's special geometry directly beneath the head ensures an excellent static performance that results from a plug-in effect between the screw and plate. In addition, the screw head's edgeless geometry minimises the number of stress concentration points while enhancing the screw's structural strength.

APPLICATIONS

- Conditionally corrosion-resistant and suitable for use in service classes 1, 2 and 3 according to DIN EN 1995 (Eurocode 5)
- Compatible with our Tension Strap HighLoad steel plates
- Not suitable for wood containing tannins

MATERIAL

- Hardened carbon steel + blue galvanized
- Free of chromium (VI) oxide
- Good resistance to mechanical stresses

CERTIFICATION

European Technical Assessment ETA-11/0024 Self-tapping screws as wood connectors

© by E.u.r.o.Tec GmbH · Last updated 08/2024 · Subject to changes, additions, typesetting and printing errors.

Page 1 of 4

ANGLE-BRACKET SCREW STRONG

ANGLE-BRACKET SCREW STRONG

TECHNICAL INFORMATION

ABS Strong											
Nominal-Ø	Head-Ø	Root-Ø	Shaft-Ø	Head height	Head shape	char. tensile capacity ¹⁾	char. yield moment ¹⁾	char. withdrawal parameter ¹⁾	char. torsional strength ¹⁾		
d [mm]	dh[mm]	di [mm]	ds [mm]	hh[mm]	-	ftens,k [kN]	My,k [Nm]	fax,k [N/mm²]	ftor,k [Nm]		
8,0	13,5	5,2	10,0	4,5	ZK	20,0	20,0	11,4	28,0		
10,0	16,5	5,9	12,0	5,0	ZK	33,0	40,0	10,8	48,0		

¹⁾ The values have been taken from ETA 11/0024 and DoP-ETA110024-05-2017. We cannot guarantee that there are no typographical or printing errors and therefore recommend that you check the documents mentioned above.

 $\textcircled{o} by \ \texttt{E.u.r.o.Tec GmbH} \cdot \texttt{Last updated 08/2024} \cdot \texttt{Subject to changes, additions, typesetting and printing errors. }$

ANGLE-BRACKET SCREW STRONG

Calculated according to ETA-11/0024, for an installation without pilot holes and with a wood density of $\rho_k = 350 \text{ kg/m}^3$. The Fild design values were calculated using kmod = 0.8 and $\gamma_M = 1.3$. For different sheet thicknesses, it is possible to interpolate the shear strength between thin and thick steel sheets. L is the minimum screw length to achieve the respective load-bearing capacity.

Please consider the following: these are planning aids. Projects may only be calculated by authorised individuals.

 $\textcircled{O} by \ \texttt{E.u.r.o.Tec GmbH} \cdot \texttt{Last updated 08/2024} \cdot \texttt{Subject to changes, additions, typesetting and printing errors. }$

ANGLE-BRACKET SCREW STRONG

Calculated according to ETA-11/0024, for an installation without pilot holes and with a wood density of $\rho_k = 350 \text{ kg/m}^3$. The FRd design values were calculated using kmod = 0.8 and $\gamma_M = 1.3$. For different sheet thicknesses, it is possible to interpolate the shear strength between thin and thick steel sheets. L is the minimum screw length to achieve the respective load-bearing capacity.

Please consider the following: these are planning aids. Projects may only be calculated by authorised individuals.

PRODUCT TABLE

ABS Strong								
Art. no.	Dimension Ød x L [mm]	Drive	Thread length [mm]	PU				
975815	8,0 x 60	TX40 •	50	50				
975816	8,0 x 80	TX40 •	70	50				
975817	8,0 x 100	TX40 •	90	50				
975818	8,0 x 120	TX40 •	110	50				
975819	8,0 x 140	TX40 •	130	50				
975820	8,0 x 160	TX40 •	150	50				
975821	10,0 x 80	TX40 •	67,5	50				
975822	10,0 x 100	TX40 •	87,5	50				
975823	10,0 x 120	TX40 •	107,5	50				
975824	10,0 x 140	TX40 •	127,5	50				
975825	10,0 x 160	TX40 •	147,5	50				
975826	10,0 x 180	TX40 •	167,5	50				

If you are not familiar with how this product is used, and particularly with the product's intended use, please contact our Application Technology department (Technik@eurotec.team).

 $\textcircled{o} by \ \texttt{E.u.r.o.Tec GmbH} \cdot \texttt{Last updated 08/2024} \cdot \texttt{Subject to changes, additions, typesetting and printing errors. }$

Page 4 of 4