# LBS CONSTRUCTION SCREW, COUNTERSUNK HEAD, BLUE GALVANIZED STEEL 

| Dimensions |  |  |  | Extraction resistance | Head pull-through resistance | Wood / wood shearing |  |  |  | Steel/ wood shearing |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\mathrm{V}\left(\mathrm{a}=0^{\circ}\right)$ <br> $V\left(\alpha=0^{\circ}\right)$ <br> $V\left(\alpha=0^{\circ}\right)$ <br> $V\left(\alpha=90^{\circ}\right)$ | $\square$ AD <br> ET $\square$ AD | $\begin{aligned} & V\left(\alpha=90^{\circ}\right) \\ & V\left(\alpha=90^{\circ}\right) \\ & V\left(\alpha=90^{\circ}\right) \\ & V\left(\alpha=0^{\circ}\right) \end{aligned}$ |  | v $\qquad$ <br> $V\left(\mathrm{a}=0^{\circ}\right)$ <br> $\vee\left(a=90^{\circ}\right)$ |  |  |
| $\begin{aligned} & d l \times L \\ & {[\mathrm{~mm}]} \end{aligned}$ | $\begin{gathered} \mathrm{dk} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} A D \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{gathered} \mathrm{ET} \\ {[\mathrm{~mm}]} \end{gathered}$ | $\begin{aligned} & \mathrm{F}_{\mathrm{ox} 0.0 \mathrm{Rk}} \\ & {[\mathrm{kN}]} \end{aligned}$ | $F_{a x, h e a d, R k}$ [kN] | $\begin{aligned} & \mathrm{F}_{\mathrm{lo,Rk}} \\ & {[\mathrm{kN}]} \end{aligned}$ | $\begin{aligned} & \mathrm{F}_{10, \mathrm{kl}} \\ & {[\mathrm{kN}]} \end{aligned}$ | $\begin{aligned} & \mathrm{F}_{\mathrm{ll,k}, \mathrm{k}} \\ & {[\mathrm{kN}]} \end{aligned}$ | $\begin{aligned} & \mathrm{F}_{\mathrm{ll,Rk}} \\ & {[\mathrm{kN}]} \end{aligned}$ | $\begin{gathered} \dagger \\ {[\mathrm{mm}]} \end{gathered}$ | $\begin{aligned} & \mathrm{F}_{10, \mathrm{Rk}} \\ & {[\mathrm{kN}]} \end{aligned}$ | $\begin{aligned} & \mathrm{F}_{\mathrm{ll,Rk}} \\ & {[\mathrm{kN}]} \end{aligned}$ |
|  |  |  |  |  |  |  |  | $\alpha_{A D}=0^{\circ}$ | $\alpha_{A D}=90^{\circ}$ |  |  |  |
|  |  |  |  |  |  | $\alpha=0^{\circ}$ | $\alpha=90^{\circ}$ | $\alpha_{\mathrm{E}}=90^{\circ}$ | $\alpha_{\mathrm{E}}=0^{\circ}$ |  | $\alpha=0^{\circ}$ | $\alpha=90^{\circ}$ |
| $8.0 \times 80$ | 15.0 | 40 | 40 | 9.60 | 9.93 | 9.58 | 8.37 | 9.58 | 8.37 | 3 | 9.58 | 8.37 |
| $8.0 \times 100$ | 15.0 | 40 | 60 | 14.40 | 9.93 | 9.66 | 8.46 | 9.66 | 8.46 | 3 | 10.78 | 9.57 |
| $80 \times 120$ | 15.0 | 40 | 80 | 19.20 | 9.93 | 9.66 | 8.46 | 9.66 | 8.46 | 3 | 11.98 | 10.77 |
| $8.0 \times 140$ | 15.0 | 60 | 80 | 19.20 | 9.93 | 9.66 | 8.46 | 9.66 | 8.46 | 3 | 11.98 | 10.77 |
| $8.0 \times 160$ | 15.0 | 80 | 80 | 19.20 | 9.93 | 9.66 | 8.46 | 9.66 | 8.46 | 3 | 11.98 | 10.77 |
| $8.0 \times 180$ | 15.0 | 100 | 80 | 19.20 | 9.93 | 9.66 | 8.46 | 8.46 | 9.66 | 3 | 11.98 | 10.77 |
| $8.0 \times 200$ | 15.0 | 120 | 80 | 19.20 | 9.93 | 9.66 | 8.46 | 8.46 | 9.66 | 3 | 11.98 | 10.77 |
| $8.0 \times 220$ | 15.0 | 140 | 80 | 19.20 | 9.93 | 9.66 | 8.46 | 8.46 | 9.66 | 3 | 11.98 | 10.77 |
| $8.0 \times 240$ | 15.0 | 160 | 80 | 19.20 | 9.93 | 9.66 | 8.46 | 8.46 | 9.66 | 3 | 11.98 | 10.77 |

Dimensioning according to ETA-11/0024. Gross density hardwood laminated veneer lumber $\mathrm{pk}=730 \mathrm{~kg} / \mathrm{m}^{3}$ (not pre-drilled).
All mechanical values provided should be viewed as subject to the assumptions that have been made and represent example calculations.
All values are calculated minimum values. Typeseting and printing errors are excepted.
a) The characterisic values of the load-bearing capacity $R_{k}$ should not be treated as equivalent to the max. possible load (the max. force). Characteristic values of the load-bearing capacity $R_{k}$ are to be reduced to the design values $R_{d}$ as regards the service class and class of the load duration: $R_{d}=R_{k} \cdot k_{m d} / \gamma_{11}$. The design values of the load-bearing capacity $R_{d}$ should be compared to the design values of the loads $E_{d}\left(R_{d} \geq E_{d}\right)$.

## Example:

Characterisicic value for constant load (dead load) $G_{k}=2.00 \mathrm{kN}$ and variable load (e.g. snow load) $Q_{k}=3.00 \mathrm{kN} . k_{\text {mad }}=0.9 . \gamma_{\mu 1}=1.3$.
$\rightarrow$ design value of the lood $\mathrm{E}_{\mathrm{j}}=2.00 \cdot 1.35+3.00 \cdot 1.5=7,20 \mathrm{kN}$.
Load-bearing capacity of the connection is proved if $R_{d} \geq E_{d} \rightarrow \min R_{k}=R_{d} \cdot \gamma_{n} / k_{m d}$
That is, the characterisicic minimum value of the load-bearing capacity is calculated as: min $R_{k}=R_{d} \cdot \gamma_{\| \prime} / \mathrm{k}_{\text {mod }} \rightarrow \mathrm{R}_{k}=7.20 \mathrm{kN}-1.3 / 0.9=10.40 \mathrm{kN} \rightarrow$ Aligned with table values.
Attention: These are planning cids. Projects must only be calculated by authorised persons.

## CERTIFICATION



Europ. Techn. Bewertung European Technical Assessment

ETA-11/0024

If you are not familiar with this product's application, and particularly with the product's intended use, please contact our Application Technology department (technik@eurotec.team).

