PRODUCT DATA SHEET

TENSION STRAP HIGHLOAD

PRODUCT DESCRIPTION

The HighLoad tension straps are designed for tensile loads that act on timber/timber connections. They are perfect for the design of multi-storey CLT buildings with floor slab thicknesses of up to 240 mm. Their optimised geometry is designed for three different load levels with characteristic tensile strengths of up to 200 kN. In order to achieve the stated values, the tension straps must be secured using Eurotec WBS Strong screws (see table Tensile strength F1).

APPLICATIONS

- · Conditionally corrosion-resistant and suitable for use in service classes
- 1, 2 and 3 according to DIN EN 1995 (Eurocode 5)
- · For tensile loads of up to 200 kN
- · To be combined with WBS Strong

MATERIAL

· S355 Hardened carbon steel + galvanized

CERTIFICATION

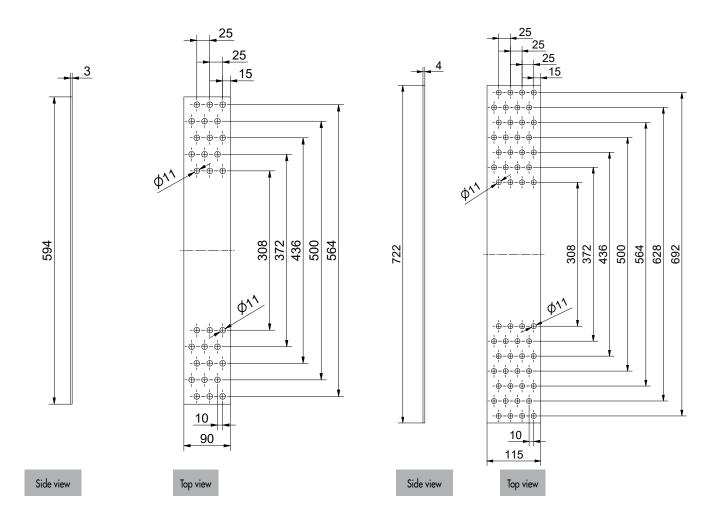
· European standard EN 1090-1

TENSILE STRENGTH F1

Tension strap Highload		Use of fastening elements	Wood E FLN3	Ctool E FLN7	
	9	crew quantity (top+bottom) [mi	Wood F _{1,t,k} [kN]	Steel F _{1,s,k} [kN]	
HH640	WBS Strong	ø 8 x 80 ø 8 x 100	15+15	56 71	78
HH760	WBS Strong	ø 8 x 80 ø 8 x 100	28+28	105 132	130
HH820	WBS Strong	ø 8 x 80 ø 8 x 100	40+40	168 200	195

During the assembly process, the minimum dimensions for the edge distances are taken into account. For CLT plates, nef = 1, as the screws are offset. For class S355 steel plates, the yield and fracture stresses are assumed to be the following: $F_y = 355 \text{ MPa}$, and $F_u = 510 \text{ MPa}$. For the static design values, Y_m , timber = 1,3 and $k_{mod} = 0.9$ are used for the wind effects and Y_m , $s_{ted} = 1,25$ for the steel failure.

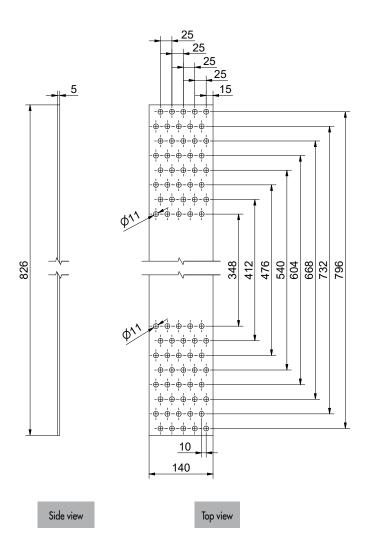
Page 1 of 3


PRODUCT DATA SHEET

TENSION STRAP HIGHLOAD

PRODUCT TABLE

Tension strap HighLoad												
Art. no.	Designation	Material	H [mm]	W [mm]	t, [mm]	Drill holes ø 11 mm	Base plate thickness tmax [mm]	PU				
954190	HH640	\$355	634	90	3	30	240	1				
954191	HH760	\$355	762	115	4	56	240	1				
954192	HH820	\$355	826	140	5	80	240	1				


DRAWING

PRODUCT DATA SHEET

TENSION STRAP HIGHLOAD

DRAWING

If you are not familiar with how this product is used, and particularly with the product's intended use, please contact our Application Technology department (Technik@eurotec.team).